A KINETIC THEORY OF GAS MIXTURES WITH REGARD
TO THE LAWS OF THE THERMODYNAMICS
OF IRREVERSIBLE PROCESSES

A, D, Khon'kin

The derivation of the hydrodynamic equations for a gaseous mixture from the system of
kinetic Boltzmann equations is analyzed. The form of the hydrodynamic equations is a
unique consequence of necessary and sufficient conditions for the solvability of systems

of linear integral equations with symmetrical kernels, which define the terms in the ex-
pansion of the distribution functions in a series with respect to a parameter of spatial non-
homogeneity (actually, the Knudsen number). The transport laws are presented in a form
for which the Onsager symmetry relations hold. In deriving the Onsager relations use is
made of symmetry properties of integral operators, which are a consequence of the in-
variance of the equations of mechanics with respect to a transformation involving changing
the sign of the time and the impulses of the particles. The Onsager relations are also de-
rived from expressions for the kinetic coefficients in terms of correlation functions.

In the thermodynamics of irreversible processes the laws of transport in multicomponent mixtures of
liquids or gases are written in a symmetrical form, i.e., the Onsager relations hold for the kinetic coeffi-
cients; these relations express the equality of the kinetic coefficients, which correspond to crossed phe-
nomena [1]. However, in handbooks on the kinetic theory of gases [2-4] the laws of transport are repre-
sented in a nonsymmetrical form. Symmetrical laws of transport for multicomponent mixtures of liquids
were obtained by the author in [5].

1. The behavior of a mixture of gases of L components is describable by means of the distribution
functions f &) (r, p, t) of particles of the k-th kind with respect to the coordinates r and momenta p in a
six~-dimensional y-space. The hydrodynamic variables describing the macroscopic state of the system,
for example, the density ni of the number of particles of the k~th kind, the mean bulk velocity u,and tem-
perature T, which depend on the coordinates and time (r, t}, may with the aid of the functions f &) pe repre~
sented in the form
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Ry = Sf(k)dp« 7 == Zﬂy_, Plig == 25 f(k)po: dp-, T — Sén 28 f(k)(_pl__?:r:;—ku)_ dp,
k [ T
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Here k is Boltzmann's constant,and the functions f &) satisfy the system of Boltzmann integrodifferential
equations
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where p', p;' are momenta of molecules of the k~th and [~th kinds after a collision characterized by initial
P, Dy, sight-line distance b, and azimuth &; repeated Greek indices will correspond to summation from 1
to 3.

2. In obtaining the hydrodynamic equations we consider distributions with a small spatial nonhomo-
geneity and allow for only a slow dependence of the distribution functions on the time, which is character-
istic of the hydrodynamic equations. Introducing the small parameter & of the spatial nonhomogeneity, we
put £ = r and seek the functions f () (r, p, t) and the hydrodynamic equations in the form of expansions |6, 7]:

) _ < 1 Iny (&, 1) 9
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In addition, we require that already in the zero-th approximation the functions fék) define completely
the variables of the hydrodynamic state:

Ny = S B gp, Plly = ZS B dp
i
2.3)
2 o2 . (
T'=3gz %Sfo(k):%;dp, P’ = Pa— Myl
Using Egs. (2.1), (2.2), we write the derivative of f(k)\ with respect to the time in the form
a,:ﬂ =D D eprp@y ® @.4)
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Substituting Egs. (2.1), (2.4) into Egs. (1.2) and collecting terms having the same powers of £, we ob-
tain the following equations for determining the functions fék):

2 J(fo(k), fo(k')) =0 (2'5)
Y
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In addition, substituting Eq. (2.1) into Eq. (1.1) and taking account of the relations (2.3), we have

qu(k)dp='0, Z,qu(k)padp=0, ngqw)z_fn;";dp:o (g=1) (2.7)
) k '

With regard to the conditions (2.3) and in accord with Boltzmann's H-theorem, Egs. (2.5) have the
solutions

5
o2
P

) _ 3
fo @am KTy ¥ 2m KT (2.8)

For fixed q the Egs. (2.6) serve to determine the functions f[(lk), k=1, ..., L. 01;1 the right sides of
these equations there appear the functions ff(lk) with gq'<qg and the functions Al(g'), nyq ), c@" with q'=q

(where the functionals with q'=g are to be considered as unknowns), and the left sides of the equations may
be represented in the form of linear integral operators with symmetric kernels {2], operating on the func-
tions

ii)q"" — fqm / 0 (2.9}

For solvability of the Egs. (2.6) it is necessary and sufficient that their right sides be orthogonal to
the solutions of the system of homogeneous integral equations, these solutions being, in accord with the H-
theorem, the following L+ 4 linearly independent vector~functions 3 ), s=1, ..., L+4;
P

P =8k =10, P=p @=1,23), li=of 2.10)
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The conditions of solvability have the form

2 S(Dq‘k’ — I, Pdp=0 2.11)
1

and serve to determine the form of the unknown functions A (Q) k=1, ..., L), B(g) =1, 2, 3), C(q). Thus
the hydrodynamic equations are a unique consequence of the way in wh1ch the normal solution of the Boltz-
mann Eq. (1.2) is constructed. Since

2 SI L dp =0 @.12)

k

the conditions (2.11) may be written in the form

ZSDQ(")ws‘k)dp—: Z‘S‘[—Pi o | Z A%, “"] 5. dp = 0 (2.13)
k K 4

m.

Since the function (2.10) does not depend on £, the derivative with respect to £¢ may be taken out from
behind the integral sign, In addition, by virtue of the conditions (2,7), among the terms with f, (k)q' only the

term with q—q'=0 is different from zero. As a result the condition (2.13) assumes the form

2 Py
‘a_g_ X g —‘—fq(ﬁ"ps(k) dp + A(Q) 2 Sjo(k)¢s(k) dp =0 (2’ 14)
a g My o

In accord with the relations (2.3) and (2.10),

I s s==1,...,L
ngo“"«bs“"dp =!pu, s=L+a,a=123 (2.15)
r | Yapult +3/pnKT, s =L+ 4
therefore the Eqgs. (2,14) assume the form
a Py
= Q ;l?dp+Ak<q’=0 k=1, .. .10 (2.16)
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/ B ® )
k

a
T,
a Py 1 -
a&a 'S;,T _,,_ fe5dp + % (T mu? + TKT) A? 4 puB 4 3,k CP =0

From this we obtain for q=1
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(1 __ aT 2 m Ougy
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For g > 1 it follows from Egs. (2.16) that
(g-1) (g-1)
49— a-gxéa , B — 51) ‘”; zs (2.18)
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The logical scheme of constructing the hydrodynamic equations is now completed. At the same time
the hydrodynamic equations of the first approximation have been constructed [relations 2.17)].
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3. We proceed now to a derivation of the laws of transport in the second approximation. However,
here, instead of the complete set of hydrodynamic variables ny, ug, T We consider another complete set:

Vh, Ua, B (B = (K1), vi=Pia)

Here p is the chemical potential of the k-th component of the mixture. In the case of a gaseous mix-
ture

vy = ln [n (Bf2mm,,)*]
This choice of parameters of the hydrodynamic state simplifies the derivation of the following rela-
tions since the factor preceding the exponential in Eq. (2.8) is now included in the exponent, and in addition,

the laws of transport, the expressions in terms of the derivatives of these parameters, satisfy the Onsager
relations.

The equations for the variables vk, ua in the first approximation have the form

oy v, Ou,, z’)um 1 2 k A aB

T T e T T e, T o, (3-2)
B aB 2 o 0u,
%= Uy, T3 Bs  (h="/nKI)

Here h is the enthalpy density.

Using these equations we transform the functional D1(k) to the form (the expression for AQ@) may be
written in terms of the functional derivatives with respect to the variables v, uy, B, using the correspond-
ing terms of the expansion of their derivatives in powers of the parameter ¢)

_ P, [0V NYmyny OV P’ po 4
D® = f) [mk (agug o )_ ﬁk_(%_k )ag + —>< (P Pe° pzéaa) ] (3.3)

where Dy g is the deformation-velocity tensor

du, ou 2 ou
4 B ¥
DaB E.. BE 3 6&@ agY

For the functions <I>(k)1 defined in Eq. (2.9), we obtain a system of integral equations*
2 Tu (@) = D (3.4)
I
T (@) = { ARO[ (v, B, ) + DO (x, By, 8) — DP (x, B, ) — DY X (r, p1, )] guab db de dp, (3.5)
In accord with Eq. (3.3), the solution of Egs. (3.4) can be written in the form

a8 My
DE = A® T —B( (9 D — 20%‘55 (3.6)

The functions Aék ) , Bc(gk [)3 y Cl({lfzy sat1sfy the equations

0?2

_ f(k) . (21’@— —T) = ;Ikl(Aa)

o ] 1 O
- fﬁ,")m— ((Pa P’ — 3P Zéap) = 2 Tia (Bap) 3.7

__f(k) (6 P — knk ) szz(cka)

Since the molecular interaction potential is assumed to be spherically symmetric, the matrix of the
integral operator& in Egs. (3.7) is invariant under rotations of a three-dimensional space, and therefore the
functions A B, g Igf) must have the following tensorial structure:

AP (p°) = p°A® (p°), CE (°) = p"CE (%)
BE (p°) = (Pa"Pa° — Y/s0*0up) B®) (p°)

The conditions (2.7) with g=1 serve to determine the solutions of Egs. (3.7) uniquely; these conditions
may be reduced to the conditions

(3.8)
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> g fpLA® dp° = 0, > ngmpfcggs; dp° =190 (3.9)
& X

by substituting the expressions (3.6) into them and taking note of Eqgs. (3.8).

Substituting Eq. (3.6) into Egs, (2.19) with g=1 and using the relations (3.8), we obtain the laws of
transport in the form

Ay,
=D (=)= D s e
PO = —nDy, QU =AKT* 2 T 29&6&

where the kinetic coefficients are defined by the formulas

R Po’ o 1 P
Dy’ = Tngk)ﬁ‘i.Agf)dp , . 'Sﬂk) ':x' PMk C(k)dp
3
1 P ° o i Pu PB °
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! wPe P2 L v 3.10
h=32p 2 (rwle 22 4w ay (3.10)

4, We show now that the Onsager relations are satisfied for the coefficients of diffusion and thermal
diffusion:
Dy’ = Dy, Dy = Dy 4.1

In fact, if we use the second of the supplementary conditions (3.9), we can put the expression for Dy
into the form

1 P [ po , -
e Y e r 3\ (4 g

Here we have also used the first of Eqgs. (3.7). Since the matrix of integral operators is symmetric[3],
;Sm (4) B®dp° = .f_‘,S AWML (B) dp° @.2)
and if we then use the third of Egs. (3.7), we obtain
Di= =5 340 i O 0 = 5 I a0 2 (b0 ) g = L {02 a0 g = D

Here we have also used the first of the conditions (3.9). We have thus established the equality of the
coefficients Dy and Dyr.

Consider now the coefficients of diffusion. Upon repeating similar calculations, we find ag a result
that

Dix __MZSfmpa < y— l)cmdp xm-—wzghm((ﬁ“)cm

The last form, in accord with Eq. (4.2), is symmetric in the indices k and k'. In proving the Onsager
relations we have used the relation (4.2), which is a consequence of the invariance of the equations of me-
chanics with respect to the transformations t —-—t, p——p.

5. For completeness we also give the derivation of the Onsager relations for the kinetic coefficients,
expressed in terms of correlation functions [5]:
&

Dk 5 dt hm “"(Jka Sa (t)>

=3

)
1 . 1 PN
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i =l —25P;, Sq=Qi— -Pq, 4(t)=exp{~tH}a



Here exp {—tH} is an operator of evolution for a system of N particles.

The dynamic variables, distinguished by the carat symbol, are defined by the relations

N N 2
Jka'—ZPl: PQ:ZP“” Qaf'—'z%tf%n“
is(k) i=1 i=1 4
(in the case of a liquid, there enter also into the expression for Q5 terms containing a two-particle inter-
action potential: these terms, in the limit of a gas, are of higher order in the density when compared with
those written down); the symbol i € (k) denotes that the summation is taken only over particles of the k-th
kind. The angular parentheses denote an average taken over an equilibrium (or a local equilibrium, a mat-
ter of no consequence in later calculations) canonical ensemble.

By virtue of the microscopic reversibility (i.e., the invariance of the equations of mechanics with
respect to the transformations t ——t, p;o ——pjn), the autocorrelation portions of the expressions for Dy
and Dy, Dyy.r and Dy are equal. To prove the Onsager relations it remains to show that

kN LR = 1 i ] \ 5.2
Jimy (s - Pe© H=lin 3 02 P20 o
1 Ry n
im —— /o P2 = A sp ol pey N
%,1_11100 7 \J;m 5 P; (t) hm % \Jka 5 Py (t)/ (5.3)

We remark that Pj is the total momentum of the system, which is an integral of the motion of the sys-
tem and does not depend on the time, Py (t)=Pp (0). Therefore, the correlators in Egs. (5.2), (5.3) are in-
dependent of the time and readily calculable. Our calculations show that both sides in the relation (5.2) are
equal to %n.p~ (KT)% and in the relation (5.3) are equal to 3p™'mn KT. We have thus established the On-
sager relations (4.1).

We wish to express our thanks to V. V. Struminskii for useful discussions of this work.
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